

ON-CHIP PHOTONICS ERBIUM-DOPED LASER FOR LIDAR APPLICATIONS

Integration of Amplifiers in Silicon Nitride Photonic Circuits

OFC Photonic Devices for Novel Applications - March 7th, 2023

D. B. Bonneville, C. E. Osornio-Martinez, M. Dijkstra and S. M. García-Blanco

Integrated Optical Systems Group, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101017136. This result reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

https://lidar-ophellia.eu

Sphellia INTEGRATED PHOTONICS AT THE UNIVERSITY OF TWENTE

At the UT we carry out research in Integrated Photonics covering materials, devices and systems for different applications, including RF photonics, LiDAR, sensing and quantum technology

Quantum processing

ellia MESA+ NANOLAB

MESA+ INSTITUTE

- 1250 m² Class 10,000 cleanroom
- 1000 m² of specialized equipment
- Deposition (PVD + CVD), lithography, ebeam, SEM, TEM, etching, dicing, annealing etc.

Sphellia INTEGRATED PHOTONICS TWENTE

Sphellia INTEGRATED PHOTONIC PLATFORMS

Sphellia AL₂O₃ AS A PHOTONIC MATERIAL

- Large transparency window: UV-mid-IR
- Low propagation losses: 5 dB/m
- Moderate refractive index: ~1.72 @1550 nm
- Wafer level deposition
- High rare-earth ion solubility
- \circ In the Nanolab \rightarrow RF reactive sputtering

[Review: Hendriks et. al. , Advances in Physics: X, 6 (1), 1833753 (2021)

- Rich history in photonics
- Naturally occurring in crystalline state as corundum, forming popular gems such as ruby and sapphire

Sphellia BROADBAND WAVEGUIDE TRANSPARENCY

1.4 dB/cm losses measured at 405 nm

Commercialized as foundry service via Aluvia Photonics

405 nm transmission

980 nm pumped AI_2O_3 : Er³⁺

U

V

ΙΛ

A L

632 nm alignment

Sphellia PAST WORKS IN ACTIVE / PASSIVE INTEGRATION

Double layer

A stack of two (or more) independent photonic layers interconnected by vertical adiabatic or resonant couplers

Single layer

Single passive photonic layer with incrustations of active gain material (photonics damascene process) \rightarrow seamless transitions between layers

[J. Mu, et. al. "Monolithic Integration of Al_2O_3 and Si_3N_4 Toward Double-Layer Active-Passive Platform," IEEE J. Selec. Top. Quant. Electron. 25, 8200911 (2019)]

[C. I. van Emmerik, et. al., "Single-layer active-passive Al₂O₃ photonic integration platform," Opt. Mater. Express 8, 3049-3054 (2018)]

ACTIVE PASSIVE INTEGRATION TECHNOLOGIES MONOLITHIC INTEGRATION: $RE^{3+}:AL_2O_3$ on SI_3N_4

~20 dB net gain from Si_3N_4 to Si_3N_4

[J. Mu, et. al., "High-gain waveguide amplifiers in Si_3N_4 technology via double-layer monolithic integration," Photon. Res. 8, 1634-1641 (2020)]

OFC – Photonic Devices for Novel Applications

OBJECTIVES - On-chip PHotonics Erbium-doped Laser for LIdar Applications

Ophellia Ophellia Work Packages

- Passive circuitry design and fabrication (TriPleX)
- Gain material development
- Microlens printing
- Photonic packaging
- End-user testing

^(a)PIC: Photonic integrated circuit ^(b)TOF: Time of flight ^(c)FMCW: Frequency-modulated continuous-wave ^(d)LiDAR: Light detection and ranging

phellia AL₂O₃:ER³⁺ PROCESS FLOW – CMOS COMPATIBILITY – FILMS, WAVEGUIDES & CHIPS

nellia FABRICATION OF AL₂O₃:ER³⁺ CHANNEL WAVEGUIDE AMPLIFIERS

Sphellia Propagation Loss – Effects of Annealing

PHOTOLUMINESCENT DECAY TIME VS ANNEALING

- Lifetime shown to vary with concentration and annealing temperatures ۲
- intensity Lifetime decrease with annealing accompanied by decrease in losses, and change in ۲ іц 10⁻² pump absorption, indicative of a change in the quenched ion fraction

*Concentrations from $1.5 - 3.0 \times 10^{20}$ ions/cm³

OFC – Photonic Devices for Novel Applications

Measured -Fitting

20

Time (ms)

0

Sphellia AL₂O₃-SI₃N₄ AMPLIFIER – WAFER LAYOUT

Location	Description	Width (µm)	Lengths (cm)
A1	Amplifier w/ straight	1.6	3.59, 6.12, 9.59, 12.92
A2	Amplifier w/ straight	1.6	3.59, 6.11, 9.59, 14.91
A3	Amplifier w/ reference Si3N4 wg	1.3	0.99, 3.19, 10.94, 12.88
A4	Amplifier w/ reference Si3N4 wg	1.3	4.48, 5.88, 7.44, 9.13
A5	Amplifier w/ straight	1.75	3.59, 6.11, 9.61, 12.96
A6	Amplifier w/ straight	1.9	3.55, 6.07, 9.51, 12.84
BO	Amplifier w/ reference Si3N4 wg	1.75	4.48, 5.88, 7.44, 9.13
B1	Adiabatic couplers + test directional couplers	1.3, 1.6	n/a
B2	Inverted strip loaded spirals	n/a	n/a
B3	Amplifier w/ reference Si3N4 wg	1.6	0.99, 3.19, 10.94, 12.88
B4	Amplifier w/ reference Si3N4 wg	1.6	4.48, 5.88, 7.44, 9.13
B5	Amplifier w/ MMI	1.6	5.92, 9.42, 5.92, 9.42
B6	Amplifier w/ MMI	1.6	5.92, 9.42, 5.91, 9.41
B7	Amplifier w/ reference Si3N4 wg	1.9	0.99, 3.19, 10.94, 12.88
C1	Amplifier w/ reference Si3N4 wg	1.6	0.99, 3.19, 17.18, 19.44
C2	Amplifier w/ reference Si3N4 wg	1.3	7.44, 10.94, 13.89, 17.13
C3	Amplifier w/ DC	1.6	5.91, 5.91, 5.96, 5.96
C4	Amplifier w/ DC	1.6	9.38, 9.38, 9.34, 9.34
C5	Adiabatic couplers + test directional couplers	1.75, 1.9	n/a
C6	Inverted strip loaded spirals	n/a	n/a

16

MULTI-LAYER INTEGRATION - CHIP LAYOUT

Cross-section and chip layout

- Si_3N_4 input
- 50/50 splitter
- Reference branch
- $Si_3N_4 Al_2O_3$ coupler + amplifier

Vertical adiabatic taper – Passive / Active coupling

bellia AL₂O₃-SI₃N₄ AMPLIFIERS – REFERENCE BRANCH GAIN MEASUREMENT

- Gain with reference branch method
 - Active-passive integration
 - Passive Si₃N₄ reference branch
 - All on-chip losses are considered
 - \circ $\,$ No need of individual characterization of losses

$$T_{on}$$
 → Pump on, signal on in amplifier branch
 T_{bon} → Pump on, signal off in amplifier branch
 T_{ref} → Pump off, signal on in reference branch

$$g_{global} = 10 * log_{10} \left(\frac{10^{T_{on}/10} - 10^{T_{bon}/10}}{10^{T_{ref}/10}} \right)$$

AMPLIFIER MEASUREMENTS – DOUBLE SIDE PUMPING SETUP

- o 1480 nm pumping used to avoid additional ETU in comparison to 980 nm for high signal powers
- o **<u>2</u> Concentrations measured** including varying widths and lengths of amplifiers

hellia AL₂O₃-SI₃N₄ AMPLIFIERS – LOW CONCENTRATION (~1.5 x 10²⁰ IONS/CM³)

On-chip pump power (~240 mW)

*variable optimum temperature depending on concentration

ellia AL₂O₃-SI₃N₄ AMPLIFIERS – LOW CONCENTRATION (~1.5 × 10²⁰ IONS/CM³)

I_{12} AL₂O₃-SI₃N₄ AMPLIFIERS – LOW CONCENTRATION (~2.5 x 10²⁰ IONS/CM³)

Width = $1.75 \,\mu m \&$ annealing $550^{\circ}C$

GAIN SUMMARY - VARIOUS LENGTHS, WIDTHS, CONCENTRATIONS & SIGNAL POWERS

State of the Art Comparison

Material	Fabrication method	On-chip net gain (dB)	On-chip signal power (dBm)	Gain / unit length (dB/cm)	Length (cm)	Erbium Concentration (×10 ²⁰ cm ⁻³)	Ref
Er ³⁺ : Al ₂ O ₃	Sputtering	17.0	14.7	1.5	12.0	3.9	This work
Er ³⁺ : Al ₂ O ₃	Sputtering	20.0	4.0	1.5	12.9	1.9	Twente
Er ³⁺ : Al ₂ O ₃	Sputtering	9.3	-30.0	2.0	5.40	1.2	Twente
Er ³⁺ :Yb ³⁺ : Al ₂ O ₃	Sputtering	4.3	-8.5	1.4	3.00	1.5	McMaster
Er ³⁺ : TeO ₂	Sputtering	14.0	13.0	2.8	5.0	2.2	LPC
Er ³⁺ : LiNbO ₃	Czochralski	18.0	0.0	5.0	3.6	1.9	SKL
Er ³⁺ : Si ₃ N ₄	lon	30.0	21.6	1.4	21	3.25	EPFL
	implantation						
Multi-layer integration							
Si_3N_4 / Er^{3+} : Al_2O_3	Sputtering	7.5	13.0	0.8	9.1	2.5	This work
Si_3N_4 / Er^{3+} : Al_2O_3	Sputtering	18.1	2.7	1.3	10	1.65	Twente
Si_3N_4 / Er^{3+} : TeO ₂	Sputtering	5.0	<-1.0	1.3	6.7	2.5	McMaster
$Si_{3}N_{4}$ / Er^{3+} : $Al_{2}O_{3}$	ALD	0.4	-20	20.0	0.16	~20	Aalto
III / V Active materials							
Si / III-V	Epitaxy	27.0	17.5	185.7	0.145	N/A	IMEC
Si ₃ N ₄ / III/V	Epitaxy	8.8	14.0	121.7	0.115	N/A	IMEC
LiNbO ₃ / III/V	Epitaxy	11.8	< 5.0	N/A	N/A	N/A	IMEC
Erbium doped fibers							
Er-doped fiber	N/A	> 19.0	13.0	N/A	N/A	N/A	Amonics
Er-doped fiber	N/A	> 30.0	> 20.0	N/A	N/A	N/A	Thorlabs

24

State of the Art Comparison

Material	Fabrication method	On-chip net gain (dB)	On-chip signal power (dBm)	Gain / unit length (dB/cm)	Length (cm)	Erbium Concentration (×10 ²⁰ cm ⁻³)	Ref
Er ³⁺ : Al ₂ O ₃	Sputtering	17.0	14.7	1.5	12.0	3.9	This work
Er ³⁺ : Al ₂ O ₃	Sputtering	20.0	4.0	1.5	12.9	1.9	Twente
Er ³⁺ : Al ₂ O ₃	Sputtering	9.3	-30.0	2.0	5.40	1.2	Twente
Er ³⁺ :Yb ³⁺ : Al ₂ O ₃	Sputtering	4.3	-8.5	1.4	3.00	1.5	McMaster
Er ³⁺ : TeO ₂	Sputtering	14.0	13.0	2.8	5.0	2.2	LPC
Er ³⁺ : LiNbO ₃	Czochralski	18.0	0.0	5.0	3.6	1.9	SKL
Er ³⁺ : Si ₃ N ₄	lon implantation	30.0	21.6	1.4	21	3.25	EPFL
Multi-layer integration							
Si_3N_4 / Er^{3+} : Al_2O_3	Sputtering	7.5	13.0	0.8	9.1	2.5	This work
Si_3N_4 / Er^{3+} : Al_2O_3	Sputtering	18.1	2.7	1.3	10	1.65	Twente
Si ₃ N ₄ / Er ³⁺ : TeO ₂	Sputtering	5.0	<-1.0	1.3	6.7	2.5	McMaster
Si ₃ N ₄ / Er ³⁺ : Al ₂ O ₃	ALD	0.4	-20	20.0	0.16	~20	Aalto
III / V Active materials							
Si / III-V	Epitaxy	27.0	17.5	185.7	0.145	N/A	IMEC
Si ₃ N ₄ / III/V	Epitaxy	8.8	14.0	121.7	0.115	N/A	IMEC
LiNbO ₃ / III/V	Epitaxy	11.8	< 5.0	N/A	N/A	N/A	IMEC
Erbium doped fibers							
Er-doped fiber	N/A	> 19.0	13.0	N/A	N/A	N/A	Amonics
Er-doped fiber	N/A	> 30.0	> 20.0	N/A	N/A	N/A	Thorlabs

25

Sphellia Future Work

• Multi-layer integration with silicon nitride resonator cavities for laser demonstration

High poweramplifier

Al_O:Er

- Systematic study of lengths and widths
- Investigate quenching and absorption/emission cross sections
- Polish facets to reduce coupling losses
- Package devices with fiber array

High power-

amplifier

• Maximize high power signal gain to achieve 50+mW on-chip

Pre-amplifier

Modulator

ASE filter

Pre-amplifier

FINAL ACKNOWLEDGMENTS & GENERAL INFORMATION

Programme(s): H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)

Topic(s): ICT-37-2020 - Advancing photonics technologies and application driven photonics components and the innovation ecosystem

Call for proposal: H2020-ICT-2020-2

Funding Scheme: RIA - Research and Innovation action

More information: <u>https://lidar-ophellia.eu</u> https://cordis.europa.eu/project/id/101017136

PARTNERS

UNIVERSITEIT TWENTE NL (COORD.)	NL	
KEOPSYSINDUSTRIES	FR	
LIONIX INTERNATIONAL BV	NL	
VANGUARD AUTOMATION	DE	-
THALES France	FR	
SICK AG Germany	DE	
RIEGL RESEARCH FORSCHUNGSGESELLSCHAFT MBH	AT	=
TEMATYS	FR	

Thank you for your attention! Happy to take questions.

