

Optical gain via multilayer monolithic integration of Si_3N_4 with Al_2O_3 :Er³⁺ waveguide amplifiers

ECIO Integrated photonic technologies and platforms – 20th April 2023

C. E. Osornio-Martinez, D. B. Bonneville, M. Dijkstra and S. M. García-Blanco

https://lidar-ophellia.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101017136. © 2021 copyright OPHELLIA Consortium members / confidential / All rights reserved This result reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

Content

Develop novel materials and integration technologies for laser sources for LiDAR applications.

 Low cost, low size and lightweight → high chip integration and tolerant packaging technology.

Photonic Integrated Circuits (PICs) are **essential** to achieve this goal

MOTIVATION

Sphellia INTEGRATED PHOTONICS IN TWENTE

Sphellia MESA+ INSTITUTE - NANOLAB

- 1250 m² cleanroom
- 1000 m² for specialized equipment
- Deposition (PVD + CVD), lithography, E-beam, etching, dicing, SEM, TEM, XRD, annealing etc.

Sphellia INTEGRATED PHOTONIC PLATFORMS

ECIO – 20th April 2023

Sphellia Al_2O_3 AS A PHOTONIC PLATFORM

- Naturally occurring in crystalline state as corundum, forming popular gems such as ruby and sapphire
- Large transparency window: UV-mid-IR
- Low propagation losses: 5 dB/m
- Moderate refractive index: ~1.72 @1550 nm

υv

A L

I A

- Wafer level deposition
- High rare-earth ion solubility
- \circ In the Nanolab \rightarrow RF reactive sputtering

- Chip layout and building blocks
 - Si₃N₄ TriPleX input/output couplers
 - 50/50 splitter
 - Reference branch

Cross-section

- Chip layout and building blocks
 - Si₃N₄ TriPleX input/output couplers
 - 50/50 splitter
 - Reference branch

Cross-section

- Chip layout and building blocks
 - Si₃N₄ TriPleX input/output couplers
 - 50/50 splitter
 - Reference branch
 - $Si_3N_4 Al_2O_3$ coupler + amplifier

Vertical adiabatic taper – Passive / Active coupling

- Chip layout and building blocks
 - Si₃N₄ TriPleX input/output couplers
 - 50/50 splitter
 - Reference branch
 - $Si_3N_4 Al_2O_3$ coupler + amplifier

- Gain with reference branch method
 - Measure amplified signal in amplifier branch (T_{on})

 $g_{global} = T_{on} - T_{ref}$

Measure signal in reference branch (T_{ref})

- Gain with reference branch method
 - Measure amplified signal in amplifier branch (T_{on})

 $g_{global} = T_{on} - T_{ref}$

Measure signal in reference branch (T_{ref})

- Influence of annealing on the gain
 - Annealing show increase in gain*

On-chip pump power (~240 mW)

*variable optimum temperature depending on concentration

Sphellia AL_2O_3 - SI_3N_4 AMPLIFIERS – GAIN MEASUREMENTS

• Gain vs pump power

Amplifier length = 4.48 cmEr³⁺ concentration ~ 1.5×10^{20} ion/cm³

- Gain vs signal power
 - Concentration comparison

On-chip pump power ~240 mW

© 2021 copyright OPHELLIA Consortium members / confidential / All rights reserved

λ = 1550 nm

Sphellia AL₂O₃-SI₃N₄ AMPLIFIERS – SUMMARY

- Gain summary
 - Various lengths, widths, concentrations and signal powers

Launched signal power

High* signal (~4.47 mW)

• 1.6 μ m width - Low

• 1.9 μ m width - Low

• 1.75 μ m width - Low

 \star 1.6 μ m width - Medium

Small signal (~ 1µW)

• 1.6 μ m width - Low

• 1.75 μ m width - Low

• 1.9 μ m width - Low

 \triangle 1.6 μ m width - Medium

Thank you for your attention!

