

ON-CHIP PHOTONICS ERBIUM-DOPED LASER FOR LIDAR APPLICATIONS

Szczawnica, 11-14.09.2022

PRE'22-Poland

At the UT we carry out research in Integrated Photonics covering materials, devices and systems for different applications, including RF photonics, LiDAR, sensing and quantum technology

Integrated LIDAR systems

INTEGRATED PHOTONICS TWENTE

MESA+ INSTITUTE

- 1250 m² Class 10,000 cleanroom
- 1000 m² of specialized equipment
- Deposition (PVD + CVD), lithography, e-beam,
 SEM, TEM, etching, dicing, annealing etc.

INTEGRATED PHOTONIC PLATFORMS

lia

<u>Ophellia</u>

AL₂O₃ AS PHOTONIC MATERIAL OPTICAL PROPERTIES

- $\circ~$ Large transparency window: UV-mid-IR ~
- Low propagation losses: 5 dB/m
- Moderate refractive index: ~1.72 @1550 nm
- $\circ~$ Wafer level deposition
- $\circ~$ High rare-earth ion solubility
- \circ In the Nanolab \rightarrow RF reactive sputtering

[Review: Hendriks et. al. , Advances in Physics: X, 6 (1), 1833753 (2021)

- \circ Rich history in photonics
- Naturally occurring in crystalline state as corundum, forming popular gems such as ruby and sapphire

ohellia AL₂O₃ PROCESS FLOW – CMOS COMPATIBILITY

ellia

ALUMINIUM OXIDE WAVEGUIDE PROPAGATION LOSSES IN THE UV-VISIBLE

Al₂O₃ FOR OPERATION BELOW 400 nm CHEMICAL MECHANICAL POLISHING

- 0.6 dB/cm loss at 377 nm after CMP (0.8 dB/cm improvement)
- Surface roughness measured with AFM (0.2nm RMS)

UNIVERSITY OF TWENTE.

1.4 dB/cm losses measured at 375 nm

405 nm transmission

980 nm pumped AI_2O_3 : Er³⁺

Soon to be sold from a foundry near you!

632 nm alignment

Double layer

A stack of two (or more) independent photonic layers interconnected by vertical adiabatic or resonant couplers

Single layer

Single passive photonic layer with incrustations of active gain material (photonics damascene process) \rightarrow seamless transitions between layers

Si₃N₄ Al₂O₃:Er³⁺

[J. Mu, et. al. "Monolithic Integration of Al_2O_3 and Si_3N_4 Toward Double-Layer Active-Passive Platform," IEEE J. Selec. Top. Quant. Electron. 25, 8200911 (2019)] [C. I. van Emmerik, et. al., "Single-layer active-passive Al_2O_3 photonic integration platform," Opt. Mater. Express 8, 3049-3054 (2018)] **IOS GROUP DEMONSTRATIONS**

The objective of OPHELLIA is to develop novel materials and integration technology for the realization of innovative PIC^(a) building blocks to develop PIC-based laser sources for emerging TOF^(b) and FMCW^(c) LiDAR^(d) applications.

These LIDAR will **be low cost and low size** thanks to the high **chip integration** and **tolerant packaging** technology while, at the same time, exhibit the same or even higher performance than existing solutions.

^(a)PIC: Photonic integrated circuit ^(b)TOF: Time of flight ^(c)FMCW: Frequency-modulated continuous-wave ^(d)LiDAR: Light detection and ranging

EXPLOITATION AND DEMONSTRATIONS

Safety in harbour and airport / Industry 4.0

Autonomous train / Traffic safety

Exploitation of the results in other potential applications

- Fully integrated product combined with cladding which may require annealing
- Amorphous alumina suffers mechanical failure from annealing polycrystalline host provides higher thermal budget
- Polycrystalline host provides lower losses across broader wavelength range

Sphellia Preliminary Findings – Polycrystalline Host

- Initial results limited by absorption and propagation losses
- OH likely leading to reduction of lifetime and 1380 nm absorption clustering of Erbium ions present
- Annealing high thermal budget host intended for reduction of losses. 1100 °C removes OH signature, but crystalizes host – fast decay (short lived lifetime) observed

SPIE Photonics EU – April 5th 2022

14 cm Waveguide

980 nm pumping

Sphellia PUMPING WAVELENGTH CONSIDERATIONS

- High output power primary goal for project (100 mW+ at 1550 nm)
- Current high temperature heat treatment introduces high absorption losses, and fast decay
- Stable lifetime across fabrication steps required

SPIE Photonics EU – April 5th 2022

© 2021 copyright OPHELLIA Consortium members / confidential / All rights reserv

Sphellia LIFETIME FOR ER³⁺ SAMPLES DURING STEPS OF FABRICATION

- Expected O-H contamination from storage of samples in ambient
- Lifetime measurements also used to determine if cladding introduces O-H leading to fast decay (quenching)
- Annealing too high reduces lifetime

Sample State	Lifetime (ms)	
'Old' fully fabricated	4.81 +/- 0.14	
'Old' fully fabricated (annealed)	2.80 +/- 0.39	Α
As deposited (slab mode)	7.24 +/- 1.44	
Etched (multi-mode waveguides)	6.91 +/- 0.55	N
Cladded	6.64 +/- 1.65	
Heat Treatment (650 °C)	6.56 +/- 2.87	

Measurements repeated over 30 days? Further passivation required? To be measured.....

Ambient storage

Lifetime reliable indicator for clustering? Pump absorption measurements coming soon....

Nitrogen purged cabinet

Are ions clustering at grain boundaries? Is erbium oxide forming in the matrix?...

LIFETIME FOR ER³⁺ SAMPLES OF VARYING DEPOSITION TEMPERATURE AND EXPOSURE TECHNIQUES

ellia

20

Sphellia Future Work

- New round of chips ready for measuring with nitrogen purged storage during fabrication
- Systematically investigate more temperatures to see affect on signal enhancement, propagation and absorption losses, quenching, and lifetime
- Quantify crystallinity with TEM & XRD
- Investigate variety of dopant concentrations to achieve highest gain and output power using 1480 nm pumping

SPIE Photonics EU – April 5th 2022

FINAL ACKNOWLEDGMENTS & GENERAL INFORMATION

Programme(s): H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)

Topic(s): ICT-37-2020 - Advancing photonics technologies and application driven photonics components and the innovation ecosystem

Call for proposal: H2020-ICT-2020-2

Funding Scheme: RIA - Research and Innovation action

More information: <u>https://lidar-ophellia.eu</u> https://cordis.europa.eu/project/id/101017136

PARTNERS

UNIVERSITEIT TWENTE NL (COORD.)	NL	
KEOPSYSINDUSTRIES	FR	
LIONIX INTERNATIONAL BV	NL	=
VANGUARD AUTOMATION	DE	-
THALES France	FR	
SICK AG Germany	DE	-
RIEGL RESEARCH FORSCHUNGSGESELLSCHAFT MBH	AT	=
TEMATYS	FR	

Thank you for your attention! Happy to take questions.

SPIE Photonics EU – April 5th 2022

REACTIVE MAGNETRON SPUTTERING & CHARACTERIZATION

ellia

WAVEGUIDE DESIGN & COUPLING SIMULATIONS

RECENT IOS GROUP DEMONSTRATIONS – LASER SENSING & UV CHARACTERIZATION

Dr. Lantian Chang Assistant Professor **Optical Sciences**

Soheila Mardani Mehrabad PhD Candidate at University of Twente

Low-loss chemical mechanically polished $Al_2O_3^{\downarrow}$ thin films for UV integrated photonics

4 May 2022 / European Conference on Integrated Photonics

60 80

0.6 dB/cm loss at 375 nm ٠ after CMP (0.8 dB/cm improvement)

Wavelength (nm

140 160

120 100

Surface roughness ۲ measured with AFM

<u>Ophellia</u>

OPHELLIA VALIDATION WAFER TEST

- First study focusing on new high index (~1.731 @ 1030 nm) films deposited at high temperature (700+ °C)
- Initial deposited wafers used for verifying choice between 980 vs 1480 nm pumping
- After initial gain & spectroscopy measurements, samples are to be annealed and re-measured
- Multi-layer integration with Si₃N₄ fabrication after optimization of Al₂O₃:Er³⁺ strip waveguides

28

ESTIMATED 22 DB CAIN _ DUAL 080 NMA DUMPING, -10 DBM 1530 NM SIGNAL SETTING

4 cm

Next Steps

Varying spiral lengths to be investigated for a variety of Er³⁺ concentrations, waveguide cross sections, and signal powers Spectroscopic parameters and loss/gain to be assessed after annealing samples at 700+ °C (PL + Lifetime & Quenching)

11 cm

14 cm

Glass? Crystal? TEM?

Preliminary measurements point towards promising net gain for high power amplifiers and laser cavities